Multicast Routing under Optical Network Constraints

Bernard Cousin¹, Miklós Molnár², Fen Zhou³

(1) IRISA - Univ. of Rennes I (2) LIRMM - Univ. of Montpellier II (3) Telecom Bretagne

Colloque *Réseaux à large bande et Internet rapide*, Beyrouth, March 2011

UMRIRISA

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Concl
•		o o oo ooo			0 00 00 00 0	00 00000	
Outline							

- 2 LH: A New Structure
- 3 ILP Formulation and Results
- 4 Heuristic Related Work
- Proposed Solutions
- 6 Numerical Results

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Concl
			00			00	00
		00			00		
		000			00		
			00				

- 2 LH: A New Structure
- ILP Formulation and Results
- 4 Heuristic Related Work
- 5 Proposed Solutions
- 6 Numerical Results

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Concl			
	• • 0	o o oo ooo			0 00 00 00 0	00 00000				
All-Opti	All-Optical Multicast Routing Definition									

AOMR

- Wavelength-routed WDM network G(V, E, W)
- One-to-many communication ms(s, D)
- Routing path: Light-structure (a set of light-trees !)
- Sparse splitting

Sparse Splitting: only few nodes equipped with light splitters (MC)

Figure: Multicast Incapable Node (MI) and Multicast Capable Node (MC)

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Concl		
	0 • 0				000	00 00000			
		000			00000				
All-Opti	All-Optical Multicast Routing Definition								

Assumptions:

- No wavelength conversion
- Sparse splitting (density of light splitters normally below 50%).
- At least, two optical fibers between any two adjacent nodes

Optical Constraints:

- Wavelength Continuity Constraint.
- Distinct Wavelength Constraint.
- Limited Number of Wavelengths.

Challenge of AOMR:

Minimizing the cost of the multicast routes for ms(s, D) is NP-Complete in WDM mesh networks.

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Conc			
			00			00	00			
	•									
		00			00					
		000			00					
All-Onti	Al-Ontical Multicasting Structures - Related Works									

Structure	Lightpath	Light-trail	Light-tree
No splitting	\checkmark	√ Optimal	
Sparse Splitting			√Optimal ?
Full splitting			√ Optimal

Light-tree is cost-optimal for AOMR with full splitting.

Is light-tree also cost-optimal for AOMR with sparse splitting? NO!

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Concl
			00			00	00
		00			00		
		000			00		
			00				

- 2 LH: A New Structure
- ILP Formulation and Results
- 4 Heuristic Related Work
- 5 Proposed Solutions
- 6 Numerical Results

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Concl
		•					
				00	00	00000	
		00			00		
		000			00		
			00				
Organiza	ation						

- Cross Pair Switching
- Light-Hierarchy
- Cost-Optimality

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Concl
		•		00	00	00000	
		00			00		
		000			00		
Cross P	air Switc	hing (CPS)					

- A pair of optical fibers between two adjacent nodes
- Input and output port pair
- MI node —> Special branching node

MI node

Figure: Cross Pair Switching of an MI node

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Concl
				00	00	00000	
		0			00		
		000			00		
Light-hie	erarchy S	Structure					

Light-hierarchy: cycles are allowed!

Figure: Two typical light-hierarchies with Cross Pair Switching

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Conc
						00	
						00000	
		00			00		
		000					
Light-hie	erarchy S	Structure					

Definition of Light-hierarchy

A light-hierarchy is a set of consecutive and directed optical channels using the same wavelength, which is rooted from the source and terminated at the destinations. Different from a light-tree, light-hierarchy is free of the repetition of nodes while it forbids the duplicate of the same optical channel (same wavelength over the same link). A light-hierarchy has the following characters:

- Each directed link only used once.
- One predecessor link for each link except that from the source
- Permitting cycle.
- Using one wavelength.
- At most two optical fibers between a pair of nodes.
- Non-leaf MI nodes: No. of input links = No. output links.
- MC nodes: one input link

Light-tree: a special case of light-hierarchy!

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Conc
				00	00	00000	
		00			00		
		000					
Cost Op	timality						

Cost Optimality of Light-tree

Theorem

In a WDM network with sparse splitting, the light-tree structure is not cost-optimal for AOMR.

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Concl
				00	00	00000	
		00			00		
		000					
			00				
Cost Op	timality						

Proof.

Multicast Routing under Optical Network Constraints

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Concl
			00			00	00
		00			00		
		000					
			00				
Cost On	timality						

Cost optimality of Light-hierarchy

Theorem

In WDM networks with sparse splitting, the cost optimal structure for AOMR is a set of light-hierarchies (at least one).

Proof. Refer to [¹] for detailed proof.

¹F. Zhou, M. Molnar, B. Cousin. Is Light-tree Structure Optimal for Multicast Routing in WDM Mesh Networks?. 18th IEEE International Conference on Computer Communications and Networks, 2009.

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Concl
	00		00			00	00
		00			00		
		000			00		
			00				

- 2 LH: A New Structure
- ILP Formulation and Results
- 4 Heuristic Related Work
- 5 Proposed Solutions
- 6 Numerical Results

Outline AOMR LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Conc
o <u>oo</u> o	•••	0	0	00	
		00	00	00000	
	0		00		
Network Parameters and ILP Variables	00				

Network Parameters

: The set of wavelengths supported per fiber.
: An integer big enough such that $\Delta > W $.
: A wavelength, $\lambda \in \mathcal{W}$.
: The set of nodes which has an outgoing link leading to m .
: The set of nodes which can be reached from node <i>m</i> .
: The in (or out) degree of node <i>m</i> in <i>G</i> ,
where $Deg^{-}(m) = Deg^{+}(m) = Deg(m)$.
: The directed link from node <i>m</i> to node <i>n</i> .
: The edge connecting nodes <i>m</i> and <i>n</i> in <i>G</i> .
It consists of $link(m, n)$ and $link(n, m)$.
: The cost of the link from node <i>m</i> to node <i>n</i> .
: The set of MC nodes in <i>G</i> .
: The set of MI nodes in <i>G</i> .

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Concl		
			00						
				00	00	00000			
		00			00				
			00						
Network	Network Parameters and ILP Variables								

ILP Variables

The objective function is subject to a set of variables/constraints:

- $L_{m,n}(\lambda)$: Binary variable. Equals to 1 if multicast request ms(s, D) uses wavelength λ on link(m, n), equals to 0 otherwise.
- $F_{m,n}(\lambda)$: Commodity flow. Denotes the number of destinations served by link(m, n) on λ .
- $w(\lambda)$: Binary variable. Equals to 1 if λ is used by the light-hierarchies, equals to 0 otherwise.

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Conc
			•	00	00	00000	
		00			00		
		000			00		
Obje ctiv	e Functi	On					

Why ILP: NP-complete!

Objective: Minimize the total cost, then the number of wavelengths used

$$Minimize: \Delta \cdot \sum_{\lambda \in W} \sum_{m \in V} \sum_{n \in In(m)} c_{n,m} \cdot L_{n,m}(\lambda) + \sum_{\lambda \in W} w(\lambda) \qquad (1)$$

where $\Delta > |W|$.

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Concl		
				00	00	00000			
		00			00				
			00						
Light-Hi	ight-Hierarchy Structure Constraints								

Refer to [²] for detailed description of ILP formulation.

²F. Zhou, M. Molnar, B. Cousin. Light-hierarchy: the Optimal Structure for Multicast Routing in WDM Mesh Networks. IEEE Symposium on Computer and Communications, 2010.

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Concl
			00			00	00
		00			00		
		000			00		
Simulati	on Confi	guration					

- Light-Hierarchy vs Light-Tree
- ILP formulations using Cplex
- 100 multicast sessions for a group size |D|
- Uniform distribution
- NSF network and European Cost-239 network

Figure: (a) NSF Network (b) European Cost-239 Network

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Concl
	00		00			00	00
		00			00		
		000			00		
			•0				
Perform	ance Ana	alveis					

LH vs LT in USA NSF Network

- \searrow : Percentage of reduced cost by Light-Hierarchy
- R(CPS): Number of Cross Pairs Switching used in 100 Samples

Confi	Configuration: nodes 5 and 8 are splitters (MC nodes)								
Size	Total Cost			Wavelengths		LH			
<i>D</i>	LH	LT	\searrow	LH	LT	R(CPS)			
2	2059	2079	0.96%	103	106	10/100			
6	4096	4247	3.56%	107	114	35/100			
9	5025	5213	3.61%	115	147	57/100			
13	6237	6330	1.47%	121	156	67/100			

Light-hierarchy outperforms light-tree for AOMR with sparse splitting!

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Concl
			00			00	00
		00			00		
		000			00		
			00				
Perform	ance Ana	alvsis					

LH vs LT in European Cost-239 Network

- \searrow : Percentage of reduced cost by Light-Hierarchy
- R(CPS): Number of Cross Pairs Switching used in 100 Samples

Configuration: nodes 3 and 9 are splitters (MC nodes)									
Size	Total Cost			Wavelengths		LH			
D	LH	LT	\searrow	LH	LT	R(CPS)			
2	1329	1344	1.12%	100	108	16/100			
5	2685	2863	6.22%	102	183	82/100			
7	3580	3747	4.46%	100	223	93/100			
10	5204	5280	1.44%	100	272	100/100			

Light-hierarchy is better than light-tree for AOMR with sparse splitting!

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Concl
	00		00			00	00
		00			00		
		000			00		
			00				

- 2 LH: A New Structure
- ILP Formulation and Results
- 4 Heuristic Related Work
- 5 Proposed Solutions
- 6 Numerical Results

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Concl
				•			
				00	00	00000	
		00			00		
		000			00		
Definitio	ons						

Definitions

- Multicast Capable Node (MC)
- Multicast Incapable Node (MI)

Figure: MI and MC nodes

In a light-tree LT under construction,

- MC_SET: source node, MC nodes and leaf MI nodes in LT
- MI_SET: non-leaf MI nodes in LT
- D: destinations not yet served

			r roposea conaciono	Numerical Results	Conci
		0 ● 0	0 00 00	00 00000	
000 Related Work	0 00		00 0		

Related Work

- Reroute-to-Source algorithm (R2S)
- Reroute-to-Any algorithm (R2A)
- Member-First algorithm (MF)
- Member-Only algorithm (MO)

Table: Comparison of Multicast Routing Algorithms

	R2S	R2A	MF	MO
Link Stress	Very high	High	Average	Best
Total Cost	Very big	Big	Average	Best
Average Delay	Optimal	Average	Average	Very big
Diameter	Optimal	Average	Average	Very large

Need Improvement!

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Conc
				00	00	00000	
		000					
Related	Work						

Member-Only Algorithm

- O The shortest path of all pairs of network nodes are computed and stored in a table.
- **2** $LT = \{s\}, MC_SET = \{s\}, MI_SET = \phi.$
- **③** Try to find the shortest path SP(d, c) from destination $d \in D$ to MC_SET of light-tree *LT* such that SP(d, c) does not involve any nodes in MI_SET of *LT*.
- 4 Add SP(d, c) to LT and remove d from D
- Update MC_SET and MI_SET of the new LT
- Goto step2 until no SP(d, c) can be found
- 0 Construct a new light-tree on another wavelength until $D = \phi$

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Concl
			00			00	00
		00			00		
		000			00		
			00				

- 2 LH: A New Structure
- ILP Formulation and Results
- 4 Heuristic Related Work
- Proposed Solutions
- 6 Numerical Results

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Conc
					•		
				00	00	00000	
		00			00		
		000			00		
Three H	leuristics						

Three Heuristics

O Hypo-Steiner Light-tree Heuristic

Delete the non-leaf MI nodes of LT from the network G, compute the nearest destination d to LT in the modified graph.

2 Light-Hierarchy Heuristic

4-degree (or above) MI nodes can be crosswise used twice to switch the light signal from the same source node to two different destinations while employing the same wavelength. It could be a method to compute the light-hierarchies by deleting the used links from the network.

In Tree Distance Priority Heuristic A destination d is preferred to be connected to LT via the connector node nearest to source s in LT, if there are several connector nodes in LT with the same cost distance to d.

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Conc
				00	0	00000	
		00			00		
		000			00		
Example	s						

Hypo-Steiner Light-tree Heuristic

Improvement I:

Hypo-Steiner Heuristic enumerates all the possible shortest paths which are able to connect a destination to the light-tree while respecting constraints.

Example 1: $ms_1 = \{s: 8 | d: 4, 6\}, MC: \{8\}; MI: \{the other nodes\}$ Stress[MO]=2, Stress[HS]=1, Cost[MO] = Cost[HS]=6

Figure: (a) NSF Network

(b) Improvement I

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Conc
				00	00	00000	
		00			00		
		000			00		
			00				
Example	s						

Hypo-Steiner Light-tree Heuristic

Improvement II:

Hypo-Steiner Heuristic tries to find the shortest constraint-satisfied path to connect a destination to the light-tree, in case that the shortest path does not work.

Example 2: $ms_2 = \{s: 8 \mid d: 9-11\}$, MC: $\{8\}$; MI: $\{the other nodes\}$ Stress[MO]=2, Stress[HS]=1, Cost[MO] = 5, Cost[HS]=6

Figure: (a) NSF Network

(b) Improvement II

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Conc
				00	00	00000	
		00			0		
		000			00		
			00				
Three H	euristics						

Three Heuristics

• Hypo-Steiner Light-tree Heuristic Delete the non-leaf MI nodes of *LT* from the network *G*, compute the nearest destination *d* to *LT* in the modified graph.

2 Light-Hierarchy Heuristic

4-degree (or above) MI nodes can be crosswise used twice to switch the light signal from the same source node to two different destinations while employing the same wavelength. It could be a method to compute the light-hierarchies by deleting the used links from the network.

In Tree Distance Priority Heuristic A destination d is preferred to be connected to LT via the connector node nearest to source s in LT, if there are several connector nodes in LT with the same cost distance to d.

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Concl
			00			00	00
		00			00		
		000			00		
Three H	euristics						

Light-Hierarchy Heuristic

Advantages:

• Overcome the inherent drawback of light-tree structure

• Span as many destinations as possible in one light-hierarchy Example 3: ms_3 ={s: 8 | d: 3, 6, 10, 11, 13, 14} MC: {8} Stress[MO]=Stress[HS]=2, Stress[LH]=1; Cost[MO]=Cost[HS]=7, Cost[LH]=9

Figure: (a) NSF Network

(b) Light-Hierarchy Heuristic

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Conc			
			00			00	00			
		00			00					
		000			0					
			00							
Three H	Three Heuristics									

Three Heuristics

• Hypo-Steiner Light-tree Heuristic Delete the non-leaf MI nodes of *LT* from the network *G*, compute the nearest destination *d* to *LT* in the modified graph.

2 Light-Hierarchy Heuristic

4-degree (or above) MI nodes can be crosswise used twice to switch the light signal from the same source node to two different destinations while employing the same wavelength. It could be a method to compute the light-hierarchies by deleting the used links from the network.

1 In Tree Distance Priority Heuristic

A destination d is preferred to be connected to LT via the connector node nearest to source s in LT, if there are several connector nodes in LT with the same cost distance to d.

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Concl
			00			00	00
				00	00	00000	
		00			00		
		000			00		
Three H	envistics						

In Tree Distance Priority Heuristic

Functions:

- Reduce Average Delay
- Reduce Diameter

Example 4: $ms_4 = \{s: 1 | d: 2-5\}$, MC: $\{1\}$; MI: $\{the other nodes\}$ AvDelay[C1] = 7/4, AvDelay[C2] = 10/4 Diameter[C1] = 3, Diameter[C2] = 4,

Figure: (a) NSF Network

(b) In Tree Distance Priority Heuristic

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Conc
				00	00	00000	
		00			00		
		000			00		
					•		
Overview	vofthe	Pronosed Algorithms					

Overview of the Proposed Algorithms

An equal cost function of *1 unit hop-count cost* is assumed on all the links.

- **1** Hypo-Steiner Heuristic & Member-Only
 - Cost Bound: $|D| \le c(ms) \le \frac{N^2}{4}$
 - Time Complexity: $|D| \times (N \log(N) + M)$, where N denotes the number of nodes in the network, and M is the number of edges in the network
- 2 Light-Hierarchy Heuristic
 - Time Complexity: $|D| imes (N \log(N) + M)$

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Concl
			00			00	00
		00			00		
		000			00		
			00				

- 2 LH: A New Structure
- ILP Formulation and Results
- 4 Heuristic Related Work
- 5 Proposed Solutions
- 6 Numerical Results

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Concl
						00	
				00	00	00000	
		00			00		
		000			00		
			00				
Simulati	on Confi	guration					

Simulation Configuration

Metrics

- Link Stress: the number of wavelengths required per fiber / per multicast session.
- 2 Total Cost: the number of fiber channels used per multicast session.
- Average Delay: the average hop counts from destinations to source.
- Diameter of Tree: the maximum hop counts from destinations to source.
- O Network Throughput: The number of accepted multicast sessions, given the number of wavelengths supported per fiber link.

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Concl			
			00			00	00			
				00	00	00000				
		00			00					
		000			00					
Simulati	Simulation Configuration									

Simulation Configuration

An equal cost of 1 hop – $count \ cost$ is applied on all the fiber links. MC and MI nodes are distributed independently through the network. 10000 random multicast sessions are generated for each network configuration. **Testbed**

Figure: USA Longhaul Network

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Concl		
				00	00	00000			
		00			00				
		000			00				
			00						
Perform	Performance Analysis								

Link Stress

- M = |D| + 1: denotes the multicast session groupsize.
- **2** GRDP-LT: Hypo-Steiner Heuristic + Distance Priority
- **3** GRDP-LH: Light-Hierarchy + Distance Priority

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Concl
			00			00	00
						00000	
		00			00		
		000			00		
			00				
Perform	ance Ana	alvsis					

Total Cost

Figure: Comparison of Total Cost

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Concl
			00			00	00
						00000	
		00			00		
		000			00		
			00				
Derform		alveie					

Average Delay

Figure: Comparison of Average Delay

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Concl
			00			00	00
						00000	
		00			00		
		000			00		
			00				
Derform		alveie					

Diameter

Figure: Comparison of Diameter

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Concl
			00			00	00
						00000	
		00			00		
		000			00		
			00				
Perform		alveie					

Network Throughput

Figure: Comparison of Network Throughput

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Concl
			00			00	00
		00			00		
		000			00		
			00				

1 AOMR

- 2 LH: A New Structure
- 3 ILP Formulation and Results
- 4 Heuristic Related Work
- 5 Proposed Solutions
- 6 Numerical Results

Outline	AOMR	LH: A New Structure	ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Concl
							•0
				00	00	00000	
		00			00		
		000	0		00		
Conclusi	ion						

Summary

- Cross pair switching of MI nodes
- Light-hierarchy: cost-optimal AOMR structure
- ILP formulation
- Time efficient AOMR heuristic using light-hierarchies [1]
- F. Zhou, M. Molnar, B. Cousin. Is Light-tree Structure Optimal for Multicast Routing in WDM Mesh Networks?. 18th IEEE International Conference on Computer Communications and Networks, 2009.

e Future Work

• Power budget consideration in AOMR (e.g., take account optical amplifier)

Outline AOMR LH:ANew Structu	re ILP Formulation and Results	Heuristic Related Work	Proposed Solutions	Numerical Results	Concl
0 00 0		0	0	00	00
ŏŏŏ			00		
000	0		00		
Conclusion					

Thank you for your attention!